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State-Space Control Design

& = Ax + Bu
y=Czx+ Du

This is equivalent to the transfer function form studied previously.

Design a controller of the form u = k(z)

Why do we need another control design procedure?

- More general

- Easily extends to multiple inputs and outputs
- Can capture nonlinear systems in this form too

- Phase plane / geometry
- System safely and physical limitations can often be described as geometric
constraints in the motion of the state through the phase space
- Optimal control
- Complex time-domain objectives can be easily specified in terms of the states



State-Space Design Procedure

1 State-Feedback Design 2 State Observer

Assume that the state is measured, Design a dynamic system to esti-
and design a static control law u = mate the state
Kx

T = Az + BKz )
Design L, M and N sothatz ~ z

Problem : We can’t measure z!

@ Combine controller and observer to provide a single, dynamic control law.

@ Add reference tracking.

Separation principle tells us that independent design of these elements is optimal.



Recall: State-Variable Form



Recall: Quick review on linear state-space

Write the following ODE in state-space form

6+ b6 + ch = du



Recall: Quick review on linear state-space

Write the following ODE in state-space form
0+ b0+ ch = du

Introduce state variables

Take derivates
i‘1 = 0 = T2
do=0=—bl —cl+du

= —bxs — cx1 + du

Write out the state-space equations

()= 3 )




Linearization

In a later lecture, we will cover multiple ways of generating linear state-space
equations

- Linearization of nonlinear ODEs

- Static Feedback Linearization

- Nonlinear inversion

- Experimental linearization

For now: Recall your system dynamique notes on linear state-space modeling



Dynamic Response



State-Space — Transfer Function

Compute transfer function
T = Ax + Bu

y=Cz+ Du



State-Space — Transfer Function

Compute transfer function
T = Ax + Bu

y=Cz+ Du

Take Laplace transform
sX(s) —x(0) = AX(s) + BU(s)
Solve for X(s)
X(s) = (sI — A)"'BU(s) + (s — A)"'z(0)

The output is
Y(s) = CX(s)+ DU(s)
= (C(sI — A)"'B+ D)U(s) + C(sI — A)"'z(0)

Assuming zero initial conditions gives the transfer function
_Y(s)

G(s) o)

=C(sI-A)7'B+D




Compute transfer function




Compute transfer function

G(s)=C(sI —A)"'B+D
s+7 12 1
oA )

. 1 {1 2} s —12
T (s+T)s+ 12 1 s+47
- s+ 2

24 T7s+12

)



Poles are complex frequencies the system will respond at without a forcing function

Consider the system without the forcing function
T = Ax

assume an initial state z(0) = zo.
pis a pole of the system if the system evolves as z(t) = e’'zo.

From the system dynamics
i(t) = peP'xo = Az(t) = A o
and therefore p is a pole if
Axo = pxo

orif pis an eigenvalue of A.



Poles are complex frequencies the system will respond at without a forcing function

Consider the system without the forcing function
T = Ax

assume an initial state z(0) = zo.
pis a pole of the system if the system evolves as z(t) = e’'zo.

From the system dynamics
i(t) = peP'xo = Az(t) = A o
and therefore p is a pole if
Az = pxo
or if p is an eigenvalue of A.

The poles are the solutions of the characteristic equation

det(sI — A) =0



Example

Compute the poles




Example

Compute the poles

Poles are given by the characteristic equation

det(sI — A)=0

s+7 12
—1 S

=(s4+T)s+12=5"+7s+12

Poles are

po TTEVI -T2

—4,-3
2 )

One can see that this is the same as the poles computed from the transfer function
s+2 _ s+2
24+ T7s+12  (s+4)(s+3)




Zeros

Zeros are generalized frequencies at which the system will not respond to an input
zis a zero if u(t) = uge™ — y(t) =0

Take u(t) = uoe™, then z(t) = zoe®t

&= ze"'wo = Ae*'zo + Buoe®' = [z[ — A fB] [mo} =0

uo

Combining this with y = Cz + Du = Ce*'zo + Duoe®" gives

2] =[]

The zeros of the system are given by the expression

z2I—-A —-B
C D

zI—-A —-B
C D

det =0




Example

Compute the Zeros




Example

Compute the Zeros

-7 -12 " 1 "
T =
1 0 0
y:[l 2]1’
12 -1
d-A -B S
det C =det | —1 z 0
1 2 0
=24z

Thereisone zero at z = —2

Compare to the transfer function, and one sees we get the right result

s+ 2
Co) = a1



Canonical Forms



How to Choose a State Representation

Two state representations can have exactly the same input-output behaviour
& = Ax + Bu = AZ + Bu
y=Czr+ Du B y=Cz+ Du

We choose the state representation depending on what we're trying to achieve.

* Control canonical form — Used to design controllers
* Modal canonical form — Used to analyse oscillation modes

* Observer canonical form — Used to design observers



Control Canonical Form

Goal: Form that allows for simple modification of the system dynamics.

Consider the transfer function

Y(s) s+ 2
U(s) 82+ T7s+12

State to output  Input to state

24 because this is a second order system



Input — State

XQ(S) 1

U(s)  s2+T7s+12

Write the dynamic equation relating x» to the input u
u =z 4 Tia + 122 ()
Introduce new state variable for the derivative
To = X1
Re-write (1) in terms of the derivative of the state =
1 =u—Try + 1222
Input to state equations

1 =u— Tx1 + 1222

IL‘2=$1



State — Output

State to output

Convert to the time domain
Y =T+ T2 =1+ X2

where we used the definition @2 = x1 from the previous slide

Put it all together to get the control canonical form
1 -7 12 . 1
= u
T2 1 0 0
1
=1 1



Control Canonical Form

Consider the transfer function

Y (s) bis" ' bp15+ by
T U(s) s"tars" i+ an_15+an

The control canonical form is

—a1 —as ... ... —Qn 1
1 0 0 0
A= 0 1 0o ... 0 B=10
: : .0 : :
0 0 1 0 0
C:[m by ..o m} D=0

It is also possible to convert to control canonical form if by is not zero (i.e., if there
are n zeros, rather than n — 1). In this case, the expression for C' is slightly more
complex and D is non-zero.



Block Diagram - Control Canonical Form

Y (s) s+2

G(s) = - .
(s) U(s) s2+T7s+12 !
+. T1 1 T1 | T2 1 T2 +
— — > — > 2 —a( —
v— s s +
+
g —7

—12 |

Control canonical form block diagram

- All dynamic blocks are integrators
- Output and input are weighted sums of the states 18



State Transformations

Consider the state equations
& = Ax + Bu
y=Czx+ Du

This representation is not unique. Consider a change of variables given by the
nonsingular matrix T'

r="Tz

The same dynamic system expressed in terms of the state z is now
©=T:= ATz + Bu
5=T "ATz+ T 'Bu
y=CTz+ Du

We get a new state representation for the same dynamic system

2= Az+ Bu A=T'AT B=T'B
y=Cz+ Du c=1T"'C D=D



State Transformation to Control Canonical Form

Goal: Convert from any representation to control canonical form.

Control canonical form

Any representation
—_—N— —_—
& = Ar + Bu 2= Az+ Bu
— T — _ _
y=Cz+ Du y=Cz+ Du
Target structure

—ai —a —as 1

A=11 0 0 B=10

0

0 1 0

20



State Transformation to Control Canonical Form

The relationship between the state matrices is
AT ' =T7"4

Let the rows of 77! be ¢1, t2 and ts, and let A be in control canonical form

—ai —az —as tl t1 A
1 0 0 to| = |t2A
0 1 0 | [t t3A

We can write the transform matrix T in terms of its last row ts

to = t3A
t1 =t A = t3A2

21



State Transformation to Control Canonical Form

Relationship between the input matrices is

t1B 1
T 'B=|tuB|=B=|0
tsB 0
Combining with the equations from the previous slide gives an expression for t3
ty = t3A ts [B AB AZB} = (o 0 1)
2 —_—
th = t3A Controllability matrix C

Finally, the last row of the transformation is given by

ty = (o 0 1) ¢t

22



State Transformation to Control Canonical Form

General procedure

1. Form the controllability matrix

C= [B AB A’B ... A’HB}
2. Compute the last row of the inverse
= [0 0o ... 1]0‘1

3. Construct the transformation matrix

[

tnAn72

T =
tn

Note : The system can only be put in controllable form if C is full rank

23



Control Law Design: Full State Feedback




Control Law Design - Full State Feedback

Try a static linear control law

T = Ax + Bu - © — Y

With such a controller, we can place n poles (i.e, all of them).



Full State Feedback

Goal: Place the poles of the closed-loop system at the given locations
S§ = 81,82,...,8n
The closed-loop dynamics are
&= Ar — BKx
with the poles given by the characteristic equation
det(sI — (A — BK)) =c(s; K) <« Polynomial linearly parameterized by K
Target characteristic equation is

(s—51)(s—82) (s —8n) = ac(s) < Polynomial

Idea: Equate coefficients of ¢(s; K) = a.(s) in order to choose K.

25



Example

Control Law for a Pendulum

G- o )

Design a linear state-feedback controller to place both closed-loop poles to —2wyp

0
1

u

i.e, double the natural frequency and increase damping ratio from 0 to 1.



Example

Control Law for a Pendulum

G- o )

Design a linear state-feedback controller to place both closed-loop poles to —2wyp

0
1

u

i.e, double the natural frequency and increase damping ratio from 0 to 1.

Target characteristic equation:

ac(s) = (s 4 2wo)® = s° + 4wos + dw;

Parameterized characteristic equation:

s 0 0 1
c(s;K)—det(sf—(A‘BK))_det{[o J . {“g !

:52+K25+w3+K1
Controller is
K = [Kl Kg] - [3w3 Auwso

[E—
N
>



Pole Placement in Control Canonical Form

Consider pole placement in control canonical form

—a1 —as ... ... —Qn 1
1 0 0 0

4o 1 0 ... 0 B— |0 K:[Kl Ko ... Kn
0 0 1 0 0

The upper companion form matrix gives the closed-loop dynamics

_(ll_KI —ag—KQ —(ln_Kn
1 0 0
A— BK = 0 1 0o ... 0
: i o0 :
0 0 e 1 0

The characteristic equation is
c(s;K) = 8" 4 (a1 + K1)s" " + (a2 + K2)s" > 4 -+ + (an + K»)

27



Pole Placement in Control Canonical Form

The characteristic equation is

n—2

o(s; K) = s" + (a1 + K1)s" " + (a2 + K2)s" 2 + - + (an + K»)

If the target characteristic equation is given by

ac(s) =s" + 18" faes" P Fan

The control law is

KZ[—G1+CI1 —az +az - _an+an]

28



Pole Placement in Control Canonical Form

Procedure to place poles at desired locations {s;} given dynamic system (A, B)

1. Compute transformation matrix 7" to convert to control canonical form (A, B.)
2. Compute control law K. to place poles at {s;} for (A, Be)

3. Convert control gain back to original state K = K.T!

29



Pole Placement in Control Canonical Form

Procedure to place poles at desired locations {s;} given dynamic system (A, B)

1. Compute transformation matrix 7" to convert to control canonical form (A, B.)
2. Compute control law K. to place poles at {s;} for (A, Be)

3. Convert control gain back to original state K = K.T!

This process is written more succinctly as Ackermann’s formula

Ackermann’s Formula

Goal Choose controller gain K for the system (A, B) so that the closed-loop system
z = (A — BK)z has the characteristic equation a(s)

K= [o 0 ... 1] c'a(A)
where a(A) is the desired characteristic equation evaluated at the matrix A

a(A) = A"+ a1 A" 4 A" 4 oy,



Compute full-state linear controller such that the closed-loop poles are —6 and —5
for the following system.

30



Compute full-state linear controller such that the closed-loop poles are —6 and —5
for the following system.

Target characteristic equation
a(s) = (s+6)(s+5) =s>+ 115+ 30

Ackermann’s formula

]
0 1][B AB] (4*+114+301)
]

—1 1 12
11 30
(EE +

1 2

)

30



Pole Placement - Summary

A static linear controller w = — Kz can place the closed-loop poles arbitrarily

Required condition: Controllability matrix C must be invertible.

31



Controllability




Consider the two different state-space models, and their transfer functions

&= 2z +2u Z:{—2 ol..[2],
0 -1 0
y =3z
b=l o
4 \
G(s)=C(sI - A)™'B G(s)=C(sI — A)™'B

R S R
-l i) -

- The effect of the input on the output is the same in both cases!
- While state z5 impacts the output, we cannot influence it via the input
- However, noise may well drive zo

Controllability is a function of the state-space representation 2



Controllability

Controllability

An LTI system is controllable if, for every z* and every T' > 0, there exists an input
function u(t), 0 < ¢t < T, such that the state goes from z(0) = 0 to z(T") = z™.

There exists an input that can move the system from any state to any other state in
finite time.

Note that this doesn’t mean that the system can be held in that state.

Controllability Test

The LTI system (A, B) is controllable if and only if

il @ — sl [B AB A®B ... A"-lB] —n
where 4 € R™*"

Note that we can place the poles of the closed-loop system if and only if the
system is controllable, since we must invert the controllability matrix.



State Transformations and Controllability

Question: Does a state transformation impact the controllability of the system?

Consider a system defined by the matrices (A, B), and the system (A, B)
transformed by the invertible matrix 7.

C.=[B AB ... a"'p]

c.=[B AB .. A"'B]
= [r'B TlATT'B .. TTIAMITTB]
=T7'C,

. C.isnonsingular if and only if C, is

State transformations do not impact controllability

34



Impact of Controllability on State Gain

Compute a linear state feedback controller to place the closed-loop poles at the
roots of s2 4+ 2¢wns + w2
0

c=[1 o
Compute the closed-loop characteristic equation

det(s[ — (A — BK)) = 52 + (K1 — Koz + 7)«5 —12K9 — K129 — TK2z0 + 12
=52 4+ 2¢wn s + wi

20(14¢wy — 37 — w2) + 12(2¢wn — 7)
(z0 + 3)(20 + 4)

20(7 — 2¢wn) + 12 — w2

= (20 +3)(20 +4)

Ky =

35



Impact of Controllability on State Gain

Take ¢ = 0.5, wy, = 2, and we get the controller
1

K=———|-27 5 8
(z0 + 3)(20 + 4) [ =0 20+ ]

System looses
controllability -{\v

—
=)
(S

10°

T T
|

|

10!

Controller gain || K||
—
<
UL

TTYTT
Ll

I
—
=)

|
©

|
o0
|
\]
|
o
|
ot
|
>
|
w
|
)

I
—
o

S — 20
(s+4)(s+3)
Zero almost cancels one of the poles — Higher gain is required to compensate

Transfer function of open-loop system is

36



Modal Canonical Form

Assume that the transfer function has distinct real poles p;?

N(s)
G(s) =
) = GG —p) =)
T1 T2 Tn
S—p1 S — P2 S — Pn

Define a set of first-order systems, each with their own state

X
LE— il — T = p1r1 +riu
U(s) s—p
X-
Az T2 — To = paxa + rou
U(s) s — p2
X'”/ n .
— r — Tn = PnTn + rau
U(s) s—opn

’This extends to repeated and complex poles as well, but the resulting A-matrix is no longer diagonal.

37



Modal Canonical Form

Modal Canonical Form

P1 1
7= T+ u
Pn 1
y:|:7”1 Tn]x
1 1 1
U—4>0O— = d 2 O—Y G TE
S s2+Ts+12
2 -1
—4 |« s+ 4 s+ 3
T2 1 |2 1
Q1 & Al o] 4 [
0 -3 1
-3




Transformation to Modal Form

Compute the modal form of the system
& = Az + Bu
y=Cr
Compute eigenvalue decomposition of A = TAT ! (assuming A is diagonalizable)
Apply the state transformation z = Tz
5=T '"AT2+T 'Bu=Az+T 'Bu

y=CTz+ Du

Note that if row ¢ of 77 B is zero, then the input cannot impact mode 4, and the
model is uncontrollable.

39



Compute the modal form of the model

A |7 1 B!
—12 0 3
C= [1 o] D=0
4 —0.3162 —0.2425
A=T 01 T =
0 -3 —0.9487 —0.9701

40



Compute the modal form of the model

A— -7 1 B— 1
—12 0 3
T = [1 o] D=0
—4 —0.31 —0.24
A—T 0 71 T 0.3162 0.2425
0 -3 —0.9487 —0.9701
Modal form

L[4 0], [-saex]
o -3 0
y = [70.3162 70.2425} p

Where we see from B, that the input has no effect on the second mode z».

40



Reference Tracking




Reference Tracking

Reference Tracking

If the state input pair (zss, uss) satisfies the conditions

0 = Azss + Buss — Steady-state

r = Cxss + Duss — Output equal to the reference
and the control law u = uss — K(x — zs5) is applied, then

lim y(t) =r

t—o0
Apply control law u = uss — K (2 — xss)
& = Az + Buss — BK(x — xss)
T — Tss = Ax + Buss — BK(x — xs5) — ATss — Buss Add zero to both sides
d(z — Tss)
dt

The matrix (A — BK) has all eigenvalues in the negative half space. Therefore x
will converge to xss, and u t0 uss.

= (A - BK)(z — xss)



Parameterization of the Target State and Input

Parameterize the steady-state as a function of r

Tss 0 Ny
r= r

Uss 1 N,

U =uss — K(x — xss) = Nur — Kz + KN,r
=—Kz+ (N, + KN,)r = —Kz + Nr

A B
Cc D

The controller is now

R N, —O—System |~y R— N [—O—>System— Y
T L T
-K . —K |«

42



Compute full-state linear controller such that the closed-loop poles are —6 and —5
and to track references for the following system.

. 1 1
T =
1 2

=l d

1
0

x + u

43



Compute full-state linear controller such that the closed-loop poles are —6 and —5
and to track references for the following system.

. 1 1
T =
1 2

=l d

We previously computed the pole placement control law

1

+
T o

u

K:[14 57}
Reference computation
—1
—1 1 1 1 1
Nep _ |4 B 0] _ 1 2 0 8 = |-0.5
N C D 1 - :
1 0 0 1 -0.5

1
N = (N, +KN,) =05+ [14 57] {0 5} — _15

43



Implement the control law

u:—K:r+Nr:—[14 57]1:—157»
27 |
=
E 0[\ |
=
(@]
727 ;.
|

Input u

6 8 10

Time (sec)


Colin Jones



Selection of Good Pole Locations




What are Good Pole Locations?

There are many ways to do this depending on the goals and the system. e.g,

1. Place dominant second-order poles
- Choose location for the ‘main’ behaviour, and damp the rest of the modes quickly

2. Model matching
- Choose from a parameterized prototype response

3. Optimal control - Linear Quadratic Regulator
- Define a ‘cost function” and select poles to minimize it

Pole selection is often an iterative scheme before finding the best location.

We will cover the first two now, and return to the third later.

45



Dominant Second Order Poles

Idea: Chose the closed-loop system to have an almost second-order response

- Use time-domain specifications to locate dominant poles
s+ 2Cwn s + wi

using e.g., overshoot, settling time, etc
- Place the remaining poles so that they are ‘much faster’

- e.g, keep damped frequency wg and move real part to be 2x-3x faster than
dominant poles

Some principles to keep in mind in order to minimize control effort

- It takes more control effort the farther poles are moved

- Moving almost uncontrollable modes is more difficult

46



Example - Placement of Dominant Mode

Design a state-feedback control law so the closed-loop system has no more than
a 5% overshoot and a settling time less than 10 seconds.

0 2 0 0 0
-0.1 -035 01 01 0.75
A= 0 0 0 2 0 B =
04 04 —04 -14 O
0 -003 0 0o -1

= O O O O

47



Example - Choose Target Model

Select second-order poles for 5% overshoot and a rise time less than 4 seconds.

Percent overshoot less than 5%

P.O. = M, x 100% = 100e~¢™/V1=¢*
_ WMy,
In(M,)? + 72

¢>— = 0.69

Choose ¢ = 0.7

Settling time less than 10 sec

Time to settle to within 6 = 1% percent of the steady-state value.
—logd _ 46 _ 46

T, = s
Cwn Cwn o
4.6
10 > —
> Zon
4.6 1
n > — — = 0.66
“n =90 07

Choose w, = 0.7 48



Example - Choose Target Model

Idea: Place remaining three poles faster than the dominant mode.

Natural frequency of dominant mode is w, = 0.7.
Choose remaining poles approx 4x faster. (rule of thumb)

Desired poles are now
P =w, [—g+i\/1 " (—i/1-C -4 —4 —4}

:0‘7[—0.707“’0.707 —0.707 — i0.707 —4 —4 —4]

1 A=1[0200 0; -0.1 -0.35 0.1 0.1 0.75; 000 2 0; 0.4 0.4 -0.4 -1.4 0; ...
0 -0.03 00 -1];

B = [0;0;0;0;1];
C=1[0010 0]
D= 0;
wn = 0.7;

zeta = 0.707;
P =wn x [roots([1 2%zeta 1]); -4%ones(3,1)];

© W N e U s W N

10 K= acker(A,B,P);




Settling time 10 sec

Overshoot of 8%

Output y

Input u
o

20 40 60
Time (sec)

|
80 100 120

50



Example - Slower Non-dominant Poles

Place non-dominant poles at —1
T [

17
=
o
2 0 -
5
o
-1 i |
T T
0.2 |

Input u
[es)
\\

| | |
20 40 60 80 100 120

Time (sec)

Non-dominant poles influence behaviour. Settling time slower. 51



Example - Faster Non-dominant Poles

Place non-dominant poles at —10

120

1 [
>
a 0 -
=
o
—1 ! |
|
200 |- -
3
8_ 0 v
<
—200 =
| | |
0 20 40 60 80 100
Time (sec)

Gain is extremely high to

move non-dominant poles to a high frequency.

52



Model Matching

Idea: Select characteristic equation that is known to give a good response

For example, the reverse Bessel polynomials are given by:

k=0
where
(2n — k)!
= k=01
W= on—kkl(n — k)! el
n=1 01(s) =s5+1
n=2 O2(s =24+ 35+3

s34+ 6s% + 155+ 15
s* 4+ 105 + 455 + 105s + 105
s5 4 158" + 105s> + 420s% + 9455 + 945

n=4 04
n=>5 95

(s)
(s)
n=3 03(s)
(s)
(s)

53



Response of Bessel Filter

Step response of bessel filters

1.2 T T T
First-order

0.8 -

0.6 |-

Output y

0.4 |-

I !

10*"-order

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

0.2
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Example - Bessel Filter

Design a state-feedback control law so the the closed-loop system has no more
than a 5% overshoot and a settling time less than 10 seconds.

0 2 0 0 0
-0.1 -035 01 01 0.75
A= 0 0 0 2 0 B =
04 04 —04 -14 O
0 -003 0 0o -1

= O O O O

Fifth-order reverse Bessel function has poles

P =
[—0.5906 + 0.9072i  —0.5906 — 0.9072i —0.8516 + 0.4427i —0.8516 — 0.4427i  —0.9264]

Use place to place the poles at P/Ts = P/10:

K:[0.1571 0.2234 —0.0434 0.0345 —0.1912}

55



Example - Bessel Filter
T T

T T T

1 [
>
a o0 .
5
(@)
-1 I I I I i
T T T T T
0.2 i
3
é_ 0 :/ v 1 v 4 v
<
—021 ]
I I I I I
0 20 40 60 80 100 120

Time (sec)

Easy to tune and good response.

56



Good Pole Locations - Summary

There are many ways to do this depending on the goals and the system. e.g,

1. Place dominant second-order poles
- Choose location for the ‘main’ behaviour, and damp the rest of the modes quickly

2. Model matching
- Choose from a parameterized prototype response

3. Optimal control - Linear Quadratic Regulator
- Define a ‘cost function” and select poles to minimize it

Pole selection is often an iterative scheme before finding the best location.

We will return to LQR control later on.
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